Salton Sea Ecosystem Restoration Plan Inflows/Modeling Working Group

September 16, 2005 San Diego, CA

Agenda

- Recap of previous meeting
- Overview of hydrologic modeling objectives
- Summary of model capabilities and limitations
- Generalized CALSIM software overview
- Enhancements incorporated for Salton Sea model
- Salton Sea model formulation
- Model demonstration and usage
- Deterministic vs stochastic applications
- Future model development tasks
- Discussion

Recap of Previous Meeting

- Historic inflows
- Projected inflows for No Action
- Approach for addressing future uncertainty
- Projected inflows considering future uncertainty
- Historic and projected salt loads
- Hydrologic model update

Hydrologic Modeling Objectives

- Provide tool for hydrologic and salinity analysis of Salton Sea alternatives to measure performance towards goals and trade-offs
- Provide information to assist in alternative configurations and designs
- Evaluate Salton Sea impacts due to hydrologic uncertainty
- Publicly-available, documented analysis tool
- Facilitate consistency of data
- Serve as an analysis tool beyond the ERP
- Suite of models may be necessary

Hydrologic Model Requirements

- Simulate future Salton Sea elevation and salinity under varying configurations and inflow assumptions
- Account for full water and salt balances
- Monthly and/or annual time steps
- Incorporate multiple impoundments and major components or processes of likely alternatives
- Optimize for simultaneous solution of elevation and salinity targets
- Incorporate functional relationships of evaporation suppression with increasing salinity, salt precipitation, and salt redissolution
- Stochastic simulation capability

Summary of Model Capabilities

- SALSA model is application of CALSIM to the Salton Sea
- Test networks and "real" networks developed and simulated
- Generalized model elements
 - Open water storage elements (SEA)
 - Natural treatment systems (NTS)
 - Mechanical treatment systems (MTS)
 - Habitat wetlands (HAB)
 - Air quality management (AQM) areas
- Consumptive demands computed for NTS, HAB, and AQM elements
- Salt balance algorithm added to model
- Delivery, elevation, and salinity targets achieved
- Monthly simulation for 75 years

Summary of Model Capabilities

- Includes functional relationships of evaporation suppression with increasing salinity
- Can achieve both water allocation targets and delivery water salinity targets
- Can incorporates goals to achieve targets within "sideboards"
- Includes initial refinement of annual inflows to monthly scale

Generalized CALSIM Software

- Developed by DWR-USBR developed
- Extensively used on the SWP-CVP system; applications for American River, Klamath systems, etc.
- Software structure and information flow
- Linear programming techniques and simulation
- Objective function and priority weights
- WRESL simulation language
- Software requirements: Fortran90 compiler, XA solver

CALSIM Model Description

- Water Resources Planning Model
- Network of nodes and arcs
- Graphical Interface
- LP solver for routing water
- WRESL language for specialized constraints
- Monthly or daily time step

DRAFT

Model Components and Structure

Network Representation

System Configuration

WRESL Language/Interface

- High-level language for rule specification
- Language interface to LP solver and time-series and relational data
- Simplicity: Two major statement types
- Flexibility: New standards, operational targets, etc.

Linear Programming Solution

- Decision variables
 - Allocation of water for instream flow, delivery, and storage
- Objective function
 - Priority-based weights for allocation of water
- Constraints
 - Physical, operational, and institutional constraints on the system
- Efficient LP technique and solver route water for each time step
- Problem updated or reformulated each time step

Databases

- Time-series Database
 - HEC-DSS (USACOE Hydrologic Engineering Center)
 - Metadata consist of a pathname (parts A-F)
 - Efficient storage and retrieval of time-series data
- Relational "Database"
 - Simple home-grown data retrieval system
 - SQL-like statements can be specified in WRESL
 - Relational data stored in structured text files

User Interface: Study Control

DRAFT

User Interface: Input/Output Analysis

Water Allocation Modeling

Water allocations over current time step

Linear Programming Model

- Decision variables
 - Decisions available to planner and LP solver
- Linear Objective function
 - Describes the objective of the model
 - Physical function or priority based
- Linear Constraints
 - Requirements/limitations of the system

Objective Function

- Sum of linear terms involving cost coefficients (c) and decision variables (X)
- Either Maximize or Minimize
- Cost coefficients are constants in LP

$$\max Z = \sum_{i=1}^{n} c_i \cdot X_i$$
 or
$$\max Z = c_1 \cdot X_1 + c_2 \cdot X_2 + c_3 \cdot X_3 + \ldots + c_n \cdot X_n$$

Constraints

- Linear combination of decision variables
- Inequalities or equalities
- General form

$$\sum_{j=1}^{m} a_{ij} \cdot X_{j} \le b_{i}$$
$$X_{i} \ge 0$$

or

$$a_{i1} \cdot X_1 + a_{i2} \cdot X_2 + a_{i3} \cdot X_3 + ... + a_{im} \cdot X_m \le b_i$$

 $X_1, X_2, X_3, ..., X_m \ge 0$

Linear Programming Model

Objective Function

$$\max Z = 140X_1 + 200X_2$$

Constraints

$$X_1 + X_2 \le 10$$

 $4X_1 + 3X_2 \le 36$
 $X_1 \le 8$
 $X_2 \le 6$
 $X_1, X_2 \ge 0$

CALSIM Model Formulation

- Decision variables:
 - flow and storage arcs
- Objective function:
 - priority based cost coefficients (weights)
- Constraints:
 - physical, operational, or institutional

Objective Function

- Objective function is Maximized
- Weights (w) on variables based upon priority
- Negative penalties (p) multiply slack and surplus variables from "soft" constraints

$$\max Z = \sum_{i=1}^{nwt} (w_i \cdot X_i) + \sum_{j=1}^{npen} (-p_j \cdot x_j^+ | x_j^-)$$

CALSIM Decision Variables

Decision Variable	Description	Example
S_{i}	end of period storage in node i	S 1
S_{ij}	end of period storage in node i, zone j	S1_2
C_{i}	period average flow in channel arc i	C1
C_{ij}	period average flow in channel arc i, zone j	C1_MIF, C1_EXC
Di	period average flow in delivery arc i	D6
D_{ij}	period average flow in delivery arc i, zone j	D6_MI, D6_AG
R_{i}	period average flow in return flow arc i	R7
Ei	period average flow in evaporation arc i	E1
Fi	period average flow in non-recoverable spill arc i	F1
A_{i}	end of period reservoir surface water area in node i	A1

CALSIM State Variables

State Variable	Description	Example
I_{i}	period average unregulated flow in inflow arc i	I1
Sileveli	storage in node i at level j	S1level4
relcapi	maximum release capacity of reservoir i, applied at channel arc i	relcapC1
C _i min	absolute minimum flow in channel arc i	C5min
C _i max	maximum flow in channel arc i	C5max
minflowi	minimum instream flow requirement for channel arc i	minflow_C4
demandii	demand for delivery arc i of type j	demand_D2_ag
rfactori	return flow fraction for return flow arc i resulting from a specified delivery arc	rfactor_R3
evi	period cummulative unit evaporation for node i	evap_S1
effi	recharge efficiency for a ground water node i resulting from a specified delivery arc	eff_D3
X^{t-1}	value of any decision variable X at any time previous to the current time period t	S1(-1), C5(-3)

CALSIM Constraints: Continuity

Reservoir nodes:

$$\left(\sum I + \sum D + \sum C + \sum R\right)_{in} - \left(\sum D + \sum C + \sum E + \sum F\right)_{out} = S_i^t - S_i^{t-1}$$

Flow-through nodes:

$$\left(\sum I + \sum D + \sum C + \sum R\right)_{in} - \left(\sum D + \sum C\right)_{out} = 0$$

Channel Capacities & Return Flows

Channel Capacities

$$C_i \min \leq C_i \leq C_i \max$$

Return Flows

$$R_i = rfactor_i \cdot D_j$$

Storage Zones

Zone volume bounded by levels

$$0 \le S_{ij} \le S_i level_j - S_i level_{j-1}$$

Sum of zones is total storage

Minimum Instream Flows

 Minimum instream flow zone bounded by flow target

$$0 \le C_{ij} \le \min flow_i$$

Sum of zones is total channel arc

$$C_i = \sum_{j=1}^{nzones} C_{ij}$$

DRAFT

Deliveries

Delivery zones bounded by current demand

$$0 \le D_{ij} \le demand_{ij}$$

Sum of zones is total delivery arc

$$D_i = \sum_{j=1}^{ntypes} D_{ij}$$

DRAFT

Reservoir Release Capacity and Non-Recoverable Spills

 Releases bounded by the maximum permissible by outlet works

$$C_i \leq relcap_i$$

 Non-recoverable spills removed from water supply system

$$0 \le F_i \le \infty$$

Reservoir Evaporation

Evaporation is dependent on surface area

$$E_{i} = ev_{i} \cdot 0.5 \Big[A_{i}(S_{i}^{t-1}) + A_{i}(S_{i}^{t}) \Big]$$

Linearization of Area-Storage curve

$$A_i(S_i^t) \approx A_i(S_i^{t-1}) + coefEV_i(S_i^t - S_i^{t-1})$$

$$coefEV_{i} = \frac{\left[A_{i}((1+c)S_{i}^{t-1}) - A_{i}((1-c)S_{i}^{t-1})\right]}{2cS_{i}^{t-1}}$$

"Soft" Constraints

- User-specified constraints which may be violated at a cost (penalty)
- Goal minimizing the deviation between a constraint's Left-hand-side (LHS) and Right-hand-side (RHS)
- Reformulated from "hard" to "soft" constraint by introducing auxiliary variables
- Auxiliary variables penalized in objective function

"Soft" Constraints

Original "hard" constraint

$$S_A - S_B = 0$$

Reformulated "soft" constraint

$$S_A - S_B + x^- - x^+ = 0$$

Slack (x⁻) and surplus (x⁺) variables added

Integer Constraints

- Constraints involving integer decision variables
- Mixed integer problem solved by "branch and bound" technique
- May increase solution times by factor 2ⁿ
- Commonly used to evaluate conditions with decision variables

Different Views (Network vs LP)

Water Allocation

 Storage: allocations to various zones

Flow: allocations to various zones

 Deliveries: allocations to various zones

- Major statement types:
 - **SEQUENCE**
 - MODEL
 - **INCLUDE**
 - DEFINE
 - GOAL

- SEQUENCE statement
 - Specifies order in which models are simulated
- MODEL statement
 - Specifies which operational rules are included in the current model
- INCLUDE statement
 - Similar to Fortran include statement, inserts statements from other files in the current location

- DEFINE statement
 - Decision variable declarations
 - Constant, relational, or time-series state variable declarations and assignments
 - Intermediate computed state variables
 - Alias variable declaration and assignment

- GOAL statement
 - Specify system operating constraints and targets
 - Directly translated into LP constraints
 - Short and long form

Simple River Network with CALSIM

- Example network consisting of:
 - 2 reservoirs
 - 4 delivery points
 - 3 return flows
- Allocation goals set for deliveries and storage target
- Demo model setup and usage

Enhancements Incorporated for Application to Salton Sea

- Evaporation suppression with increasing salinity
- Water quality algorithm
- Elevation and water quality targets
- Salt precipitation and re-dissolution (in progress)
- Stochastic wrapper (in progress)

Relative Evaporation as Function of TDS

Water Quality Algorithm

- Concentrations computed for every flow or storage arc in the system
- Conservative constituent with complete mixing at nodes assumed

$$C_{o}^{t} = \frac{\sum Q_{i}^{t} C_{i}^{t}}{\sum Q_{i}^{t}} \qquad C_{s}^{t} = \frac{\sum Q_{i}^{t} C_{i}^{t} + S^{t-1} C_{s}^{t-1}}{\sum Q_{o}^{t} + S^{t}}$$

- Previous cycle (internal time step iteration) concentration used to linearize the equation
- Updated each cycle and mass balance checks included

SALSA Model Formulation

- Network
- Components
- Mathematical formulation
- Targets
- Solution methods
- Input data and monthly downscaling

SALSA Model Network

Modeling Salton Sea Restoration Components with SALSA

- Key components of restoration alternatives
 - Open water storage elements (SEA)
 - Natural treatment systems (NTS)
 - Mechanical treatment systems (MTS)
 - Habitat wetlands (HAB)
 - Air quality management (AQM) areas
- Consumptive use demands computed for NTS, HAB, and AQM components
- SEA components simulated as storage reservoirs
- Model allocates water to these components based on priority weights

Consumptive Demands and Delivery Targets

NTS, HAB, AQM water requirements

$$demand = \frac{ETo*Kc*A}{(1-rfactor)}$$

ETo is reference ET, Kc is crop coeficient, A is irrigated area, and rfactor is the return flow fraction of delivered water

- Area is dynamically computed for AQM since exposed area is directly related to Sea and Brine water surface area
- Delivery arcs allocate water to these demands based on weights

$$0 \le D_{ij} \le demand_{ij}$$

Elevation Targets

$$0 \le S_{ij} \le S_i level_j - S_i level_{j-1}$$

- Weights drive the allocation of water to zones (or away from zones)
- Levels limit the size of storage zones
- Elevation targets are translated into storage targets through bathymetric tables

Sea Salinity Targets

 SEA salinity target set through constraint on constituent balance

$$\frac{\sum Q_i^t C_i^t - \sum Q_o^t C_o^t + S^{t-1} C_s^{t-1}}{S^t} \approx C^*$$

- Target is achieved through a penalized constraint (negative weight for non-attainment)
- Non-linear water quality constituent balance equation with Q, S, and C all potentially decision variables
- Linearized by using C from previous cycle and updating

Delivery Salinity Targets

 Delivery salinity target set through constraint on constituent balance

$$\frac{\sum Q_i^t C_i^t}{\sum Q_i^t} \approx C^*$$

- Target is achieved through a penalized constraint (negative weight for non-attainment)
- Non-linear water quality constituent balance equation with Q and C both potentially decision variables
- Linearized by using C from previous cycle and updating

Solution Method

- Model is configured to simulate multiple cycles on a monthly time step
 - Cycle 1
 - delivery and storage targets
 - water allocation
 - Cycle 2
 - salinity targets
 - water allocation constrained to delivery and storage results from cycle 1 maintained
 - Cycle 3 ...n
 - same as 2 with updated water quality concentrations

Input Data

- Initial conditions
 - volume in each storage node
 - concentration in each storage node
- Time-series data
 - inflows
 - inflow TDS concentrations
 - ETo, Kc data (can be patterned for relational)
- Relational data
 - bathymetry

Monthly Downscaling

- All annual hydrologic input requires downscaling to monthly time interval
- Initial method applies an average monthly pattern to the annually varying inflows and evaporation
- More comprehensive approach in progress to select patterns based on hydrologicallysimilar years in the historical record
- Projections outside of the historical realm will require pattern reshaping

SALSA Model Demonstration

Deterministic vs Stochastic Applications

- Current model is deterministic
 - one hydrologic trace is simulated
 - results in one trace of elevation, salinity, etc
 - does not account for variability or uncertainty
- Modification to model for stochastic version has begun
 - multiple hydrologic traces considering variability and uncertainty
 - results in many (hundreds/thousands) traces of simulation results
 - allows statistical analysis of results

Future Model Development Tasks

- Internal QA of algorithms
- Calibration 1950-99 historical period
- Validation ?
- Refine monthly downscaling methods
- Application to all major configurations being considered
- Stochastic wrapper
- Greater automation

Discussion